Science Daily
July 11, 2013

Indiana University scientists have transformed mouse embryonic stem cells into key structures of the inner ear. The discovery provides new insights into the sensory organ’s developmental process and sets the stage for laboratory models of disease, drug discovery and potential treatments for hearing loss and balance disorders.

A research team led by Eri Hashino, Ph.D., Ruth C. Holton Professor of Otolaryngology at Indiana University School of Medicine, reported that by using a three-dimensional cell culture method, they were able to coax stem cells to develop into inner-ear sensory epithelia — containing hair cells, supporting cells and neurons — that detect sound, head movements and gravity. The research was reportedly online Wednesday in the journal Nature.

Previous attempts to “grow” inner-ear hair cells in standard cell culture systems have worked poorly in part because necessary cues to develop hair bundles — a hallmark of sensory hair cells and a structure critically important for detecting auditory or vestibular signals — are lacking in the flat cell-culture dish. But, Dr. Hashino said, the team determined that the cells needed to be suspended as aggregates in a specialized culture medium, which provided an environment more like that found in the body during early development.

Read More

The Emergency Election Sale is now live! Get 30% to 60% off our most popular products today!


Related Articles